Advantages of Exhaust Gas Turbocharging

Compared with a naturally aspirated engine of identical power output, the fuel consumption of a turbocharger engine is lower, as some of the normally wasted exhaust energy contributes to the engine's efficiency. Due to the lower volumetric displacement of the turbo engine, frictional and thermal losses are less.

The power-to-weight ratio, i.e. kilowatt (power output)/kilograms (engine weight), of the exhaust gas turbocharged engine is much better than that of the naturally aspirated engine.

The turbocharger engine's installation space requirement is smaller than that of a naturally aspirated engine with the same power output.

A turbocharged engine's torque characteristic can be improved. Due to the so-called "maxidyne characteristic" (a very high torque increase at low engine speeds), close to full power output is maintained well below rated engine speed. Therefore, climbing a hill requires fewer gear changes and speed loss is lower.

The high-altitude performance of a turbocharged engine is significantly better. Because of the lower air pressure at high altitudes, the power loss of a naturally aspirated engine is considerable. In contrast, the performance of the turbine improves at altitude as a result of the greater pressure difference between the virtually constant pressure upstream of the turbine and the lower ambient pressure at outlet. The lower air density at the compressor inlet is largely equalized. Hence, the engine has barely any power loss.

Because of reduced overall size, the sound-radiating outer surface of a turbocharger engine is smaller, it is therefore less noisy than a naturally aspirated engine with identical output. The turbocharger itself acts as an additional silencer.